# Systematics and phylogenetic relationships of Whip snakes (Hierophis Fitzinger) and Zamenis andreana Werner, 1917 (Reptilia: Squamata: Colubrinae) 

Beat SCHÄTTI ${ }^{1}$ \& Paul MONSCH ${ }^{2}$<br>${ }^{1}$ Apartado postal 383, San Miguel de Allende, Gto. 37700, República Mexicana.<br>${ }^{2}$ Tellstrasse 4a, CH-8400 Winterthur, Switzerland.

Systematics and phylogenetic relationships of Whip snakes (Hierophis Fitzinger) and Zamenis andreana Werner, 1917. - Morphological and molecular data of Coluber (sensu lato) andreanus and all recognised species of the Palaearctic whip snake genus Hierophis Fitzinger are presented. Morphologically, Andreas' racer shows remarkable similarities to dwarf snakes (Eirenis spp., Pseudocyclophis persicus). Derived conditions of head and body pholidosis including dorsal scale reduction pattern and the number of apical pits separate Eirenis Jan and C. (s.l.) andreanus from Hierophis spp. Character states strongly support sister group relationship of dwarf snakes to Andreas' racer. Molecular analyses confirm monophyly of Hierophis spp., C. (s.l.) andreanus, and dwarf snakes of the genus Eirenis, and paraphyly of Hierophis auct. MtDNA sequences indicate a basal position of the eastern Palaearctic $H$. spinalis vis-à-vis the western species group (H. cypriensis, H. gemonensis, H. viridiflavus). These taxa belong to an early radiation within whip and dwarf snakes. The eastern Mediterranean $H$. caspius, H. jugularis, and H. schmidti appear to represent a paraphyletic grouping including $C$. (s.1.) andreanus ( 12 S rDNA sequence data). Conflicting molecular and morphological results are discussed and the character phylogeny of external morphological features is re-assessed.
Key-words: Coluber (s.l.) andreanus - Eirenis - Hierophis - morphology osteology - hemipenis - transformation series - phylogeny - mtDNA.

## INTRODUCTION

Without taking account of Oriental taxa (Utiger, 2002), Old World racers and their allies belong to at least eight different genera, i.e., Eirenis Jan, 1863, Hemerophis Schätti \& Utiger, 2001, Hemorrhois Boie, 1826, Hierophis Fitzinger in Bonaparte, 1834, Lytorhynchus Peters, 1862, Platyceps Blyth, 1860, Pseudocyclophis Boettger, 1888, and Spalerosophis Jan, 1865 (Schätti 1986, 1987; Schätti \& Utiger, 2001). The latter genus is the sister taxon of Hemorrhois Boie. Together with Platyceps Blyth, they make up a monophyletic group among Old World racers.

The Palaearctic whip snake (or racer) genus Hierophis Fitzinger belongs to a distinct evolutionary lineage within Afrotropical, Palaearctic, and Saharo-Sindian racers. It is considered to include H. caspius (Gmelin, 1789), H. cypriensis (Schätti, 1985), H. gemonensis (Laurenti, 1768), H. jugularis (Linnaeus, 1758), H. schmidti (Nikolskij, 1909), H. spinalis (Peters, 1866), and H. viridiflavus (Lacépède, 1789), the type species (Schätti, 1987, 1988, 1993; Schätti \& Utiger, 2001; Utiger \& Schätti, 2004).

Zamenis andreana Werner, 1917 from the southern Zagros Mountains in Iran is a poorly known and enigmatic species characterised by a number of distinctive external morphological features typically encountered in dwarf snakes of the genus Eirenis Jan. Schätti (2001) thought that Andreas' racer is a representative of an early evolutionary lineage among Palaearctic racers. Schätti \& Utiger (2001) placed the taxon in their incertae sedis section, i.e., Coluber sensu lato, stressing the necessity of comparison with Eirenis spp.

A preliminary molecular analysis (Schätti \& Utiger, 2001) generated low bootstrap values for the European (Hierophis gemonensis, H. viridiflavus) and eastern Mediterranean (H. caspius, H. jugularis, H. schmidti) whip snakes. On the basis of mtDNA sequence data, Eirenis modestus (Martin, 1838) turned out to be the sister taxon of the latter species group, thus rendering Hierophis auct. paraphyletic. The reality of two whip snake groups was also confirmed with cytochrome $b$ sequences (Nagy et al., 2000).

Using external morphological characters, vertebra (only Hierophis spp.) and hemipenis features, as well as molecular methods, this study investigates the phylogenetic relationships of Zamenis andreana Werner, the systematic composition of Hierophis, and the morphological demarcation of whip snakes vis-à-vis dwarf snakes, i.e., Eirenis spp. and Pseudocyclophis persicus (Anderson, 1872).

## MATERIAL AND METHODS

Methods and definitions of terms used in the text are explained in Schätti (1987, 1988). For the purpose of this study, the number of anterior suboculars may include an additional (supplementary) scale. The anterior temporals are made up of the first and second row of scales. Bilateral reductions of the number of longitudinal dorsal scale rows (dsr, at midbody: msr) are either low (lateral) or high (i.e., paravertebral or vertebral). Their position on the posterior portion of the trunk is expressed as a percentage of the total number of ventrals (\%ven) and calculated on the basis of the average of the right and left side counts. Vertebra measurements, and in particular the length of the centrum (lc) and neural crest (nc), the least width of the neural arch (wn), and the width across the prezygapophyses (wp), are figured in Helfenberger (2001).

Scientific names of Hierophis spp. are cited with the author and year of publication upon their first mention in the text. In the case of Eirenis spp. except those used for molecular analyses (see below), as well as Oriental racer genera cited in the Discussion, only the author's name is given.

Acronyms used in the text are CAS (California Academy of Sciences, San Francisco), MHNG (Muséum d'histoire naturelle, Genève), MVZ (Museum of Vertebrate Zoology, Berkeley), and ZMUC (Zoologisk Museum, København).

Hierophis Fitzinger (sensu Utiger \& Schätti, 2004) is understood to contain two European taxa, the endemic Cyprus whip snake, three eastern Mediterranean species, as well as the eastern Palaearctic $H$. spinalis. Lacépède's whip snake ( $H$. viridiflavus) from NE Spain to Dalmatia, Malta, and Gyaros Island (Cyclades) in the Aegean Sea, the Balkans whip snake (H. gemonensis) from Dalmatia to the Aegean region, and $H$. cypriensis make up the western species group. Eastern Mediterranean species include H. caspius from the Balkans eastward and two Anatolia-Caucaso-Iranian species, $H$. jugularis and H. schmidti. As to the systematic make-up of dwarf snakes, the reader is referred to the appropriate section in the text.

External morphological data for Coluber (s.l.) andreanus are from five specimens reported earlier (Schätti, 2001) and MHNG 2626.59. Scale features of Eirenis and Hierophis spp. are from Boulenger (1894, 1914), Eiselt (1976), Schmidtler \& Schmidtler (1978), Doczenko (1985), Schätti (1985, 1987, 1988), Doczenko (1989), Franzen \& Sigg (1989), Schmidtler \& Eiselt (1991), Böhme (1993), Schätti (1993), Schmidtler (1993), Schmidtler \& Baran (1993b), Schmidtler (1997), Sivan \& Werner (2003), and Utiger \& Schätti (2004).

A partial sequence of the mitochondrial small ribosomal subunit (12S rRNA) of six racer or dwarf snake taxa and presumably related colubrines was obtained from frozen muscle or a dry skin (Eirenis sp.). Voucher specimens are Coluber (s.l.) andreanus (Werner, 1917) MHNG 2626.59 (Iran: Gavilah, Khuzestan), Eirenis medus (Chernov in Terentjev \& Chernov, 1940) MHNG 2627.4 (Iran: vicinity of Mahniyah, Hamadan/Zanjan border), E. punctatolineatus (Boettger, 1892) MHNG 2626.99 (Iran: vicinity of Hashtijan, Fars), Eirenis sp. MHNG 2626.71 (Iran: Mehkuyeh, Fars; sloughed skin, see Dwarf Snakes), Lytorhynchus diadema (Duméril, Bibron \& Duméril, 1854) MHNG 2427.32 (Yemen: Jabal Mafluq), and Spalerosophis microlepis Jan, 1865 MHNG 2626.70 (Iran: Mehkuyeh, Fars).

The technique of DNA isolation as well as PCR and sequencing procedures are described in Utiger et al. (2002). The obtained data were added to a selection of 16 Palaearctic, Saharo-Sindian, and an Oriental racer species from an existing sequence file consisting of two partially analysed mitochondrial genes, cytochrome oxidase subunit I (COI) and 12 S rRNA (Utiger \& Schätti, 2004). Due to constraints in laboratory facilities, only one gene region (12S rRNA) was investigated for the new taxa presented in this study. The lacking COI characters were coded as missing.

Phylogenetic analyses were performed with PAUP* version 4.0 b 10 for Mac (Swofford, 1998). Weighted maximum parsimony (MP) procedures are described in Utiger et al. (2002) and Utiger \& Schätti (2004). Gaps in the 12 S rDNA sequence were treated as fifth character state. After a first run with heuristic search and tree-bisection reconnection (TBR) branch swapping, characters were weighted with the rescaled consistency index (RC, Farris, 1989) and a second heuristic search was performed. The procedure was repeated once; further weighting did not alter the parameters of the resulting tree. Nonparametric bootstrap values (Felsenstein, 1985) with 1000 replicates were calculated for unweighted and weighted characters.

Table 1. Sequence properties and tree reconstruction parameters

|  | gaps: missing <br> unweighted MP | gaps: $5^{\text {th }}$ character state |  |
| :--- | ---: | ---: | ---: |
| unweighted MP | weighted MP |  |  |
| Length of sequence alignment (COI/12S) | $1017(407 / 610)$ | $1017(407 / 610)$ | $1017(407 / 610)$ |
| Total of variable characters (COI/12S) | $339(142 / 197)$ | $350(142 / 208)$ | $350(142 / 208)$ |
| - parsimony-informative ((COI/12S) | $249(116 / 133)$ | $256(116 / 140)$ | $256(116 / 140)$ |
| Number of most parsimonious trees | 4 | 2 | 1 |
| Tree length | 1067 | 1121 | 266.72 |
| Rescaled consistency index (RC) | 0.195 | 0.199 | 0.478 |

## RESULTS

Hierophis Fitzinger, 1834
Loreal and preocular single (the latter rarely divided). Usually eight supralabials (seven to nine), fourth and fifth entering eye. Anterior subocular situated between third and fourth supralabial; sometimes very small or, rarely, lacking in Hierophis jugularis; occasionally absent or with an additional small scale in $H$. spinalis. Two postoculars, normally only upper in contact with parietal. Usually two (one to, sometimes, three) scales in first row of temporals, and two or three (rarely one) in second. Nine or ten (eight to twelve) sublabials (Tb. 3).

Ventrals in ơ ó 163-174 (gemonensis) and 178-211, ㅇ 9 168-182 and 194-227, respectively; subcaudals 86-125 ( $\sigma \delta$ ) and $84-117$ ( $\circ \circ$ ). Maximum total length ca. 100 cm (cypriensis, gemonensis, spinalis) to over 200 cm (caspius, jugularis).

TAble 2. Selected morphological data for Hierophis spp. Dorsal scale rows (dsr) on the neck, at midbody, and prior to the vent, posterior reduction pattern (prp: low (l) or high (h), see Material and Methods), number of maxillary (max), palatine (pal), pterygoid (pter), and dentary (den) teeth as well as vertebrae ratios (length of the centrum: lc, length of neural crest: nc, least width of neural arch: wn, width across prezygapophyses: wp).

| Species | dsr | prp | max | pal | pter | den | lc/wn | lc/wp | nc/wn |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| caspius | $17-19-15$ | $1-1(-\mathrm{h})$ | $12-15$ | 9 | $14-18$ | $14-17$ | $1.25-1.44$ | $0.70-0.77$ | $0.88-1.05$ |
| cypriensis | $17-17-13$ | $1-\mathrm{h}$ | $16-18$ | $10-11$ | $17-20$ | $19-20$ | $1.38-1.58$ | $0.74-0.80$ | $1.11-1.28$ |
| gemonensis | $17-19-15$ | $1-1$ | $16-19$ | $9-12$ | $20-23$ | $16-23$ | $1.23-1.35$ | $0.70-0.74$ | $0.95-1.03$ |
| jugularis | $17-19-15$ | $1-1$ | $12-14$ | 11 | $18-20$ | $16-20$ | $1.16-1.36$ | $0.71-0.73$ | $0.94-1.04$ |
| schmidti | $17-19-15$ | $1-1$ | $12-15$ | 9 | $17-19$ | $14-17$ | $1.36-1.39$ | $0.72-0.75$ | $1.00-1.08$ |
| spinalis | $17-17-15$ | 1 | $13-15$ | $8-10$ | $10-12$ | $16-18$ | $1.45-1.53$ | $0.74-0.81$ | $1.05-1.21$ |
| viridiflavus | $17-19-15$ | $1-1$ | $14-16$ | $9-11$ | $15-20$ | $15-18$ | $1.28-1.44$ | $0.68-0.82$ | $0.88-1.05$ |
|  |  |  |  |  |  |  |  |  |  |

Dorsal scales with paired apical pits, in 17 longitudinal rows at neck (15th ventral), 17-19 msr, and 13-15 in front of vent. A lateral increase of the number of dsr on anterior portion of trunk except in Hierophis cypriensis and H. spinalis. One (spinalis) or two lateral reductions involving rows $2-5$ on both sides of posterior portion of body; a third fusion (rows 6-8), in most cases unilateral (i.e., 14 dsr prior to vent), sometimes occurs in H. caspius. H. cypriensis has 17 dsr throughout the
Table 3. Selected morphological characters in Hierophis spp. (caspius, gemonensis, jugularis, schmidti, viridiflavus), H. cypriensis, H. spinalis, Coluber (s.l.) andreanus, Eirenis spp. (africanus, aurolineatus, barani, collaris, coronella, coronelloides, decemlineatus, eiselti, hakkariensis, levantinus, medus, modestus, rechingeri, rothi, thospitis), E. lineomaculatus, E. p. punctatolineatus, and Pseudocyclophis ( $P$. persicus). Number of loreal, preocular (preoc), anterior subocular (suboc, see Material and Methods), supralabial (supral), sublabial (sublab, *: see Results), postocular (postoc, *: sometimes single in E. medus), and anterior (first and second) temporal (temp) scals, Methods). Unusual conditions in parenthesis.

|  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Taxa | loreal | preoc | suboc | supral | sublab | postoc | $1^{\text {st }}$ temp | $2^{\text {nd }}$ temp | a.p. | msr | prp |
| Hierophis spp. | 1 | $1(2)$ | $1(0)$ | $8(7,9)$ | $9-10(*)$ | 2 | $2(1,3)$ | $2-3$ | 2 | 19 | $1-1(-\mathrm{h})$ |
| H. cypriensis | 1 | 1 | 1 | $8(9)$ | 10 | 2 | $2(1)$ | $2-3$ | 2 | 17 | $1-\mathrm{h}$ |
| H. spinalis | 1 | 1 | $1(0,2)$ | $8(9)$ | $9(8,10)$ | 2 | $2(1,3)$ | $2-3$ | 2 | 17 | 1 |
| C. (s.l.) andreanus | 1 | 1 | $0-2$ | 7 | 8 | 2 | 1 | $2(1)$ | 1 | 17 | 1 or 0 |
| Eirenis spp. | 1 | $1(2)$ | 0 | 7 | $7-8(9)$ | $2(1 *)$ | 1 | $2(1)$ | 1 | $15-17$ | 1 or 0 |
| E. lineomaculatus | $0(1)$ | 1 | 0 | 7 | $8(7)$ | $1(2)$ | 1 | $2(1)$ | 1 | 17 | 1 |
| E. punctatolineatus | 1 | 1 | 0 | 7 | $9(8,10)$ | 2 | 1 | 2 | 1 | 17 | 1 |
| Pseudocyclophis | $0(1)$ | 1 | 0 | 7 | 8 | $1(2)$ | 1 | 1 | 15 | 1 or 0 |  |

forebody, a first reduction involving the third and fourth row at $61-68 \%$ ven, and a paravertebral or vertebral reduction (rows $6+7$ or $7+8$ ) to 13 dsr situated between 66-79\%ven (Tbs 2-3).

Maxillary with 12-19 teeth, palatinum 8-12, pterygoid 10-12 (spinalis) and 1423 , and dentary 14-23. Vertebra ratios are: lc/wn 1.16-1.58, lc/wp 0.68-0.82, nc/wn 0.88-1.28 (Tb. 2).

Hemipenis with 3-6 distinct rows of spines; enlarged basal hook present in Hierophis cypriensis, H. gemonensis, and H. spinalis. Apex calyculate and bulbous in everted state (two longitudinal grooves in situ); borders of calyces denticulate proximally, usually smooth towards apex.

Coluber (sensu lato) andreanus (Werner, 1917)
Loreal and preocular single. Seven supralabials, third and fourth in contact with eye. Anterior subocular single, paired, very small, or absent (Schätti, 2001: Tb. 1; one


Plate 1
Coluber (sensu lato) andreanus ( $\ddagger$ ) MHNG 2626.59 from Khuzestan (Gavilah), Iran.
distinct subocular in MHNG 2626.59). Two postoculars, both (lower only partially) in contact with laterally extended parietal. First temporal single, coalesced with sixth supralabial in ZMUC R6044 (Schätti, 2001: Fig. 1) ${ }^{1}$, usually two (one) scales in second temporal row. Eight sublabials (Tb. 3).

[^0]Ventrals show a pronounced sexual dimorphism, i.e., 217-218 (two o $\delta^{\circ}$ ) and 247-269 (four $9 \circ$ ); subcaudals 92-96 and 84-94, respectively. Maximum total length $445+155 \mathrm{~mm}\left(\delta^{*}\right)$ and $586+164 \mathrm{~mm}$ ( $\%$ ) in syntypes (Werner, 1917).

Dorsal scales with single apical pits (best visible on flanks), in 17 longitudinal rows on anterior portion of trunk and at midbody, and 17 (no reduction) or 15 dsr in front of vent (Schätti, 2001). CAS 100474 ( $\delta^{\top}$ ) with a lateral reduction involving row $2+3$ at $87 \%$ ven; MHNG 2626.59 ( $~(~) ~$ has 17-15-17 (etc.) dsr between ventrals 221-246 ( $89-99 \%$ ven), fluctuation between rows $2-4$, and row $1+2$ in the case of the last reduction to 15 dsr.

Maxillary with 9-13 teeth ( 10 in MHNG 2626.59). Proximal portion of hemipenis spinose (no further data available, vertebra ratios unknown).


Fig. 1
Weighted maximum parsimony (MP) tree of two partially sequenced gene regions (COI and 12 S RNA) with the Oriental racer Coelognathus flavolineatus (Schlegel) as outgroup. In the case of taxa with an asterisk reconstruction is based on 12S rDNA sequence data only. Bootstrap values (1000 replicates) from unweighted (upper) and weighted (lower values) MP analysis.

## Comparative Morphology

Coluber (s.1.) andreanus differs from Hierophis spp. in lower supralabial and sublabial counts ( 7 instead of 8 and 8 vs. usually $9-10$, respectively), parietal shape, i.e., laterally extended and in contact with lower postocular, and a single first temporal scale (parietal usually not reaching beyond upper postocular, 2 first temporals) ${ }^{2}, 247$ or more ventrals in females ( 227 or less), single apical pits (paired), only one lateral dsr reduction that is sometimes absent (invariably present, Tb .3 ), and a maximum total length of ca. 75 cm vs. $100-200 \mathrm{~cm}$ or more. Andreas' racer possesses a surprising number of external morphological character states in common with Eirenis spp. (see Tbs 3-4 and Discussion).

Hierophis cypriensis differs from congeneric species in, for instance, the occurrence of a paravertebral or vertebral reduction on the posterior portion of the trunk (Utiger \& Schätti, 2004), and it has the highest lc/wn and nc/wn ratio within the genus (Tbs 2-3).

Due to similar osteological (basisphenoid) and hemipenis features (bulbous shape and general ornamentation), the senior author assumed that Masticophis spinalis Peters from Central Asia to Korea belonged to Hierophis (Schätti, 1987: Figs 1, 3.e; Schätti, 1988: Figs 6, 8). H. spinalis is exceptional among Palaearctic whip snakes in only one reduction on the posterior portion of the trunk involving lateral scale rows, low tooth counts of the pterygoid (Tb. 2), and coloration, i.e., presence of a light vertebral stripe and no ontogenetic change of the dorsal colour pattern.

The geographically isolated Hierophis spinalis and H. cypriensis differ from congeneric species in, for instance, a lower number of dsr (17 instead of 19) on the forebody (Tb. 2), presence of a basal hook (also in H. gemonensis, see Character Phylogeny), the shape of the lateral processus of the pterygoid (simple instead of bicuspid), and higher vertebra ratios (lc/wn, nc/wn, Schätti, 1987: Fig. 2). It also appears that female $H$. spinalis attain larger maximum size than males, whereas the contrary applies to congeneric species except $H$. cypriensis.

## Dwarf Snakes

As generally understood (e.g., Doczenko, 1985; Leviton et al., 1992), dwarf snakes contain the putatively monotypic genus Pseudocyclophis Boettger, i.e., P. persicus (Anderson) (including, e.g., P. walteri Boettger) reported from eastern Anatolia to Pakistan, as well as Eirenis Jan. Eirenis africanus (Boulenger) from NE Sudan to Djibouti (and probably NW Somalia) as well as 16 valid species from the eastern Mediterranean area to the Caucasus, Iran, and Turkmenistan are recognised, i.e., E. aurolineatus (Venzmer), E. barani Schmidtler, E. collaris (Ménétriés), E. coronella (Schlegel), E. coronelloides (Jan), E. decemlineatus (Duméril, Bibron \& Duméril), E. eiselti Schmidtler \& Schmidtler, E. hakkariensis Schmidtler \& Eiselt, E. levantinus Schmidtler, E. lineomaculatus Schmidt, E. medus (Chernov), E. modestus (Martin), the type species (Schmidtler \& Schmidtler, 1978), E. punctatolineatus (Boettger), E.

[^1]rechingeri Eiselt, E. rothi (Jan), and E. thospitis Schmidtler \& Lanza. Nine Eirenis spp. ( $53 \%$ ) were described or revalidated ( $E$. coronelloides) over the last 33 years.

Pseudocyclophis persicus attains a total maximum length of ca. 50 cm and is characterised by the usual absence of a loreal (small if present) and a single postocular (Tbs 3-4). P. persicus has 15 msr and sometimes a posterior dsr reduction, $2(1+1)$ anterior temporals, a slender habitus as well as high ventral (up to 224 in $\delta^{\circ} \delta^{\circ}, 238$ in ㅇ \&) and subcaudal counts ( 95 and 85, respectively, Doczenko, 1985).

Doczenko (1989) assigned Eirenis collaris, E. coronella, E. eiselti, E. medus, E. rechingeri, and $E$. rothi, i.e., species with 15 msr except $E$. africanus (not examined), to a new subgenus, Collaria. Schmidtler \& Eiselt (1991) noted that, for instance, the closely related E. hakkariensis and E. thospitis with 17 and 15 msr , respectively (see below), caused considerable doubt ("erhebliche Bedenken") as to the taxonomic division of Eirenis Jan, and later studies (e.g., Schmidtler, 1993: 94) called the validity of Collaria into question. Finally, the close relationship ("nahe Verwandtschaft") of $E$. modestus ( 17 msr ) with E. thospitis induced Schmidtler (1997) to abandon Doczenko's (1989) subgeneric concept.

Nine of the 17 species including Eirenis coronelloides and E. thospitis have 15 msr and there is no posterior dsr reduction except in E. coronella (fide Schmidtler \& Schmidtler, 1978) and E. africanus (Ineich, 2003) ${ }^{3}$.

Eirenis collaris, E. eiselti, E. medus, and E. rothi make up the "E. collaris group" (e.g., Schmidtler \& Baran, 1993a) that may have evolved from E. modestus ("Linie E. modestus - E. collaris - E. rothi", Schmidtler, 1993) or from a common ancestor stock (Schmidtler, 1997). A single postocular sometimes occurs in E. medus (Tb. 3). E. rothi often has only 7 sublabials and a single second temporal, i.e., only 2 instead of usually 3 anterior temporals. In this species, the shape of the parietal (see footnote 2) is a variable feature as exemplified by MHNG 1247.1 (borders lower postocular) and MHNG 1363.58 (only in contact with upper postocular).

Single second temporals are normally also found in Eirenis coronella. This small species (ca. 35 cm maximum total length) sometimes has 9 sublabials, a reduction from 15 (msr) to 13 dsr in front of the vent, and low ventral ( 125 in $\delta^{\hat{0}} \mathbf{\delta}, 143$ in ㅇ ) and subcaudal counts (Schmidtler \& Schmidtler, 1978; Sivan \& Werner, 2003). E. coronelloides is a minuscule (ca. 25 cm maximum total length) eastern Mediterranean (southern Levant) species. It has few ventrals ( $\begin{gathered}\text { o } \\ \text { o } 123-134, ~ ㅇ ~ ㅇ ~ \\ 140-\end{gathered}$ 155 ) and subcaudals ( $36-48$ and 33-40, respectively) and differs from E. coronella (4067 subcaudals) in "having a black crown, a dark ventral stripe or both" (Sivan \& Werner, 2003). In the latter species, Schmidtler \& Schmidtler (1978) recorded a minimum of 32 subcaudals for females and 38 in male specimens.

The phylogenetic affinities of Eirenis africanus, E. coronella, E. coronelloides, and the singular $E$. rechingeri (striped, only known from the holotype) remain unclear. E. africanus is rare in collections; this species has $2(1+1)$ anterior temporals (Boulenger, 1914) but, according to Scortecci (1930: Fig.), the parietal does not touch the lower postocular (see footnote 2).

[^2]The "Eirenis modestus complex" (sensu Schmidtler, 1997) includes E. thospitis with 15 msr and five species (aurolineatus, barani, hakkariensis, levantinus, and modestus) with 17 msr and, usually, a reduction to 15 dsr prior to the vent (see footnote 3 ).

The posterior reduction may be present or absent in Eirenis aurolineatus and E. levantinus. E. modestus has exceptionally ("sehr selten", Schmidtler \& Baran, 1993b) 19 msr ; this number is more often found in E. m. cilicius Schmidtler from around Burdur, Turkey (Schmidtler, 1997). Specimens of E. modestus with 17 dsr at midbody and in front of the vent (i.e., no reduction) are documented (e.g., Schmidtler \& Eiselt, 1991; Schmidtler, 1993: Tb. 1).

A considerable number $(33 \%, \mathrm{n}=13)$ of northern Anatolian Eirenis m. modestus examined by Schmidtler (1997) have a single postocular and, rarely, there are 2 temporals in the first row (Schmidtler \& Baran, 1993b). All taxa of the "E. modestus complex" show variation in the number of preoculars (1-2), although two scales are uncommon in E. levantinus and E. hakkariensis (Schmidtler \& Eiselt, 1991: Tb. 1; Schmidtler, 1993: Tb. 1) ${ }^{4}$. The latter species is comparatively large (ca. 50 cm maximum total length) and has 8-9 sublabials. Schmidtler \& Eiselt (1991) discuss differences of the Hakkari dwarf snake and E. punctatolineatus (see below).

Eirenis lineomaculatus with a posterior reduction from 17 to 15 dsr involving lateral rows is among the smallest species (ca. 30 cm maximum total length, Schmidtler \& Schmidtler, 1978) of the genus (see E. coronelloides). E. lineomaculatus is outstanding for a usually single postocular and absence of the loreal, or its small size if present (Tbs 3-4), as well as extremely low ventral (103-119 in すో す, 117-132 in 우 ㅇ) and subcaudal (28-38 and 21-33, respectively) counts (Schmidtler \& Schmidtler, 1978).

Eirenis decemlineatus and E. punctatolineatus possess a posterior reduction from 17 to 15 dsr involving lateral rows. The latter is remarkable for an elevated number of sublabials ( 9 , sometimes 10 ) in the nominate subspecies (Tbs 3-4); E. $p$. kumerloevei Eiselt sometimes has 8 sublabials (Eiselt, 1976: Tb.; Franzen \& Sigg, 1989: Tb. 1). E. decemlineatus, with a total length of up to 90 cm by far the largest dwarf snake, has 7-9 sublabials and may have 3 second temporals. Schmidtler \& Eiselt (1991) noted that these species are probably not closely related ("vermutlich nicht einmal näher miteinander verwandt"), and that the intraspecific ("geographische") variation of E. decemlineatus requires further studies.

A sloughed skin of an Eirenis sp. from Fars Province (Iran, see Material and Methods) lacked the anteriormost portion (including head) and tail tip and could not be identified with certainty. Given the length of the fragment (ca. 65 cm ), 17 msr , and clear genetic differences vis-à-vis E. punctatolineatus (Fig. 1), it cannot be excluded that the exuvia is from E. decemlineatus. Eiselt (1971) noted that this species had not yet been recorded from the vicinities of Shiraz.

The dwarf snake fauna of Iran is not yet well explored as exemplified by Eirenis medus (see Material and Methods). It appears that Eiselt's (1971) reference to E. decemlineatus and the presence of this species in "Iran" as noted by Leviton et al. (1992) rely on Wall's (1908) "Contia

[^3]decemlineata" from Maidan Mihaftan (Masjed Soleyman, Khuzestan). The specimens having "In the posterior part [...] spots [that] become rearranged in longitudinal interrupted lines" most probably belong to E. punctatolineatus. This pattern is unknown in E. decemlineatus (F. J. Schmidtler in litt. August 2003).

## Character Phylogeny

Schätti (2001) regarded the outstanding features of Coluber (s.l.) andreanus, i.e., the low number of supralabial, sublabials, and temporal scales, the occasional absence of an anterior subocular, few dsr, and the absence of posterior reductions (or a single fusion involving paraventral rows) as probably ancestral character states ("wahrscheinlich plesiomorphe Merkmalszustände"). Mostly single preoculars, two supralabials entering the orbit, and the absence of high (paravertebral or vertebral) dsr reductions in most species led Schätti \& Utiger (2001) consider Hierophis a conservative genus vis-à-vis other Palaearctic as well as Saharo-Sindian and Afrotropical racers and allied genera (Hemorrhois, Platyceps, and Spalerosophis spp.). Although molecular (mtDNA) data of the type species of Eirenis Jan (E. modestus) suggested sister group relationship of dwarf snakes to eastern Mediterranean Hierophis spp., the authors put forward putatively ancestral conditions of external morphology in dwarf snakes, in particular the absence of an anterior subocular and few supralabial and temporal scales.

Schmidtler \& Eiselt (1991) considered Eirenis modestus with 17 msr a very conservative ("sehr ursprüngliche") species. Taxa with 15 msr and including mostly small-sized ("eher kleinwüchsig") species were thought to be more advanced ("fortschrittliche") dwarf snakes (Doczenko, 1989; Schmidtler, 1993: 90). New studies using multivariance analyses (Schmidtler, 1993, 1997) suggest that E. decemlineatus, the largest dwarf snake, is a very conservative and systematically isolated taxon ("extreme Außengruppe", Schmidtler, 1993: 93).

According to Schmidtler (1997), a large loreal ("großes Frenale") and high degree of fragmentation of the temporals ("hoher Zerfallgrad der Temporalia") are derived character states. This assertion collides with results showing that Pseudocyclophis persicus (loreal absent, $1+1$ anterior temporals) is a highly advanced species (see Discussion) as evidenced by an extremely low reduction index (19, Schmidtler, 1993: Tb. 3). The third presumably advanced ("wohl synapomorphe") condition within dwarf snakes, i.e., the contact of the first temporal with the supralabial bordering the orbit ("häufiger Kontakt 1. Temporale und suboculares Supralabiale", Schmidtler, 1997: 49), is purely quantitative and highly variable. In the "Eirenis modestus complex", for instance, values range from $0 \%$ in E. m. modestus and certain populations of E. m. semimaculatus (Boettger) to $39 \%$ in E. aurolineatus (Schmidtler, 1997: Tb. 1, character 15).

In dwarf snakes, the loss ("Verschwinden") of the loreal (in Eirenis lineomaculatus and Pseudocyclophis persicus), the number of posterior (!) temporals, and in particular the cranial shift of the dsr reduction from 17 to 15 are correlated with the reduction of total length ("reduktionsrelevante Merkmale"). Dwarfism ("Verzwergung") also affects the diameter of the eye, width of the frontal, dimensions of the anterior and posterior inframaxillary scales, and, in males, the number of subcaudals.

The number of preocular, postocular, and gular scales are not influenced by this phenomenon (Schmidtler, 1997).

Without anticipating the situation in Hemerophis socotrae (Günther), the genera Hemorrhois, Platyceps, and Spalerosophis, as well as the unassigned racers Coluber (s.l.) dorri (Lataste), C. (s.l.) scorteccii (Lanza), and C. (s.l.) zebrinus (Broadley \& Schätti) from the western Sahel (Sudanese Arid), Somalia, and Namibia, respectively (see Schätti \& Utiger, 2001), the morphological and molecular data presented in this study, and in particular the phylogenetic affinities of $C$. (s.l.) andreanus and Eirenis spp., suggest character polarities for Palaearctic whip and dwarf snakes as listed in Table 4.

Table 4. Distribution of character states in dwarf and whip snakes. Taxa and their abbreviations are Coluber (s.1.) andreanus (A), Eirenis lineomaculatus (B), E. p. punctatolineatus (C), Eirenis spp. (D, see Tb. 3), Hierophis caspius, H. jugularis, and H. schmidti (E), H. gemonensis and H. viridiflavus (F), H. cypriensis (G), H. spinalis (H), and Pseudocyclophis persicus (I). Characters ( 0 for ancestral, 1 for derived condition) are (1) loreal: present ( 0 ), absent (1); (2) postocular( s ): paired (0), single (1); (3) subocular: present (0), absent (1); (4) sublabials: 9 or more ( 0 ), 7 or 8 (1); (5) supralabials: 8 or more (0), 7 (1); (6) first temporal(s): paired (0), single (1); (7) second temporal(s): 2 or 3 (0), single (1); (8) midbody dorsal scale rows: 19 (0), 15-17 (1); (9) posterior reduction(s): 2 , rarely $3(0), 1$ or absent (1); (10) apical pits: paired ( 0 ), single (1). Conditions found in $95 \%$ or more of the individuals per species are shown; not considered are, in particular, the occasional occurrence of a single postocular in E. medus (Tb.3) or rare character states found in other Eirenis spp., e.g., a single postocular and two first temporals (modestus) or the occasional presence of 9 sublabials (decemlineatus, hakkariensis, see Dwarf Snakes).

| no. | character | A | B | C | D | E | F | G | H | I |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | loreal | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2 | postocular(s) | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 3 | anterior subocular | $0 / 1$ | 1 | 1 | 1 | 0 | 0 | 0 | $0(1)$ | 1 |
| 4 | sublabials | 1 | 1 | $0(1)$ | 1 | 0 | 0 | 0 | 0 | 1 |
| 5 | supralabials | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 6 | first temporal(s) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 7 | second temporal(s) | $0(1)$ | $0(1)$ | 0 | $0(1)$ | 0 | 0 | 0 | 0 | 1 |
| 8 | midbody scale rows | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 9 | posterior reduction(s) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 10 | apical pits | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |

Stickel (1951) and Doczenko (1985: Fig.) studied hemipenis features of Eirenis modestus and dentigerous bones (palatinum, pterygoid) of E. collaris, E. modestus auct., and Pseudocyclophis persicus. However, published information about phylogenetically significant osteological (skull, vertebrae) and hemipenis characters are lacking for most dwarf snake species and Coluber (s.l.) andreanus. According to Sivan \& Werner (2003), Shwayat (1998) investigated "hemipenis morphology" of Jordan Eirenis spp.

The striking resemblance of Hierophis jugularis, H. viridiflavus, Eirenis modestus (and possibly other dwarf snake species), and Palaearctic ratsnakes as, for instance, Elaphe schrenckii Strauch and Zamenis longissimus (Laurenti) with respect to hemipenis ornamentation and its bulbous shape (Schätti, 1988: Figs 6-7; Schmidtler \& Baran, 1993b: Fig. 55; Utiger et al., 2002: Fig. 5) is most probably based on ancestral
character states. This is also the case with the enlarged basal spine found in Hierophis spp. (cypriensis, gemonensis, spinalis), E. modestus, and ratsnakes, e.g., Zamenis lineatus (Camerano) and species of the genera Euprepiophis Fitzinger and Oreophis Utiger, Helfenberger \& Schätti.

## DISCUSSION

Without taking account of the Oriental racer genera Coelognathus Fitzinger, Gonyosoma Wagler (including, e.g., Herpetodryas frenatus Gray and Coluber prasinus Blyth), and Ptyas Fitzinger (see Utiger, 2002), our molecular approach (Fig. 1) reveals three major evolutionary lineages of Old World colubrines. They are represented by five Palaearctic and Saharo-Sindian genera (Eirenis, Hemorrhois, Hierophis, Platyceps, Spalerosophis), Saharo-Sindian leaf-nosed snakes (Lytorhynchus spp.), and the Socotra racer (Hemerophis socotrae). The uncorrected sequence divergence (p) for 12S rDNA of H. socotrae and Lytorhynchus diadema is 14\%, and, for instance, $10 \%$ in the case of H. socotrae and Hierophis viridiflavus.

The geographically isolated Namibia racer Coluber (s.l.) zebrinus belongs to a lineage that diverged from the common racer stock prior to the evolution of Afrotropical, Palaearctic, and Saharo-Sindian racers and related genera (Schätti \& Charvet, 2003). The sequence divergence (p) vis-à-vis Hemerophis socotrae and Hierophis viridiflavus is $14,5 \%$ and $12 \%$, respectively (unpubl. data).

Whip snakes of the genus Hierophis (sensu Utiger \& Schätti), Coluber (s.l.) andreanus, and Eirenis spp. are monophyletic (Fig. 1). They represent a distinct evolutionary lineage probably including Pseudocyclophis persicus.

MtDNA sequences corroborate preliminary molecular data (12S and COI rDNA) for Eirenis modestus and the phylogenetic affinities of dwarf snakes, paraphyly of Hierophis (sensu Utiger \& Schätti), close relationship of H. cypriensis, H. gemonensis, and H. viridiflavus, and sister group status of the western whip snakes to the eastern Palaearctic H. spinalis (Schätti \& Utiger, 2001; Utiger \& Schätti, 2004). Furthermore, the phylogenetic tree (Fig. 1) indicates an early separation of western Hierophis spp. from a common ancestor stock giving rise to Palaearctic whip and dwarf snakes and suggests that Eirenis spp. are the sister group of Coluber (s.l.) andreanus and the eastern Mediterranean H. caspius, H. jugularis, and H. schmidti.

With regard to external morphology, European and eastern Mediterranean Hierophis spp. show ancestral character states. Most of these species are remarkable for large body size. The smaller H. cypriensis and H. spinalis are advanced whip snakes on the basis of low msr. The absence of an increase of dsr on the forebody in these taxa (present in congeneric species) is correlated with the number of msr. The single posterior dsr reduction and, rarely, the absence of an anterior subocular in $H$. spinalis are derived conditions.

Apart from Oriental genera (see above), Hierophis caspius and H. jugularis are the largest Old World racers. The reduction of body size is a remarkable evolutionary trend in Palaearctic whip and dwarf snakes affecting various scale characters as exemplified by the small Eirenis lineomaculatus, but not the minuscule E. coronelloides (see Dwarf Snakes and Character Phylogeny).

Character state distribution within the ingroup (Tb. 3) suggests that paravertebral and/or vertebral dsr reductions found in Hierophis cypriensis may be derived
conditions. However, the occurrence of high reductions in H. caspius (Schätti, 1988) and the criterion of the correlation of transformation series (Hennig, 1979) might favour the opposite view. In the case of the presence of a light vertebral stripe in H. spinalis, the outgroup criterion within whip and dwarf snakes supports autapomorphy for this character state. This might also be true for larger female maximum size of H. spinalis or the distinct sexual dimorphism of ventral scales in Coluber (s.l.) andreanus. Coloration features including melanism in Mediterranean Hierophis spp. are possibly correlated with large body size.

Based on the conditions in Eirenis collaris, E. modestus, and Pseudocyclophis persicus (Doczenko, 1985: Fig.), the shape of the lateral processus of the pterygoid in Hierophis cypriensis and H. spinalis (see Comparative Morphology) may be derived states. The character phylogeny of other osteological conditions found in these species, i.e., high lc/wn and nc/wn ratio, or few pterygoid teeth in H. spinalis, are difficult to assess for the lack of comparative material.

On higher systematic levels, the slow evolving 12S rDNA generally provides better results than the protein-coding COI sequence. Although 12 S sequence data (Fig. 1) suggest paraphyly of eastern Mediterranean Hierophis spp., we consider the generic allocation of Coluber (s.l.) andreanus as debatable. Reservations concerning the association of Andreas' racer with these whip snakes stem from morphological evidence, i.e., a considerable number of derived character states supporting sister group relationship of Andreas' racer to dwarf snakes.

Coluber (s.l.) andreanus, Eirenis spp., and Pseudocyclophis persicus have a low number of supralabial (third and fourth bordering eye), sublabial (except E. p. punctatolineatus), and anterior temporal scales, the parietal in contact with the lower postocular (see footnote 2), 15-17 msr with single apical pits (Boulenger 1894; Böhme, 1993), and at most one posterior dsr reduction involving lateral or paraventral rows (Tbs 3-4). The occasional absence of an anterior subocular in $C$. (s.l.) andreanus is the normal condition encountered in dwarf snakes. Furthermore, the maximum total length of these taxa does not exceed 100 cm .

Assuming the character phylogeny determined for whip and dwarf snakes (Tb. 4), an evolutionary history as indicated by molecular data (Fig. 1) would imply parallelism in Coluber (s.l.) andreanus and Eirenis spp., or postulate reversal of the polarity in at least six transformation series (sublabials, supralabials, first temporal, msr , dsr reduction, and apical pits) in both eastern Mediterranean whip snake sections, i.e., Hierophis jugularis and H. caspius - schmidti.

Derived conditions of head pholidosis including the occasional absence of an anterior subocular in Coluber (s.l.) andreanus as well as derived dorsal scale features (few msr, at most one posterior dsr reduction, low reduction levels, and single apical pits) advocate monophyly of Andreas' racer, Eirenis spp., and Pseudocyclophis persicus. The occurrence of few body scale rows (dsr, msr) and lateral (low) reductions in Hierophis spinalis are due to parallelism.

Certain derived character states met with in Coluber (s.l.) andreanus, e.g., the absence of a dsr reduction or only $2(1+1)$ anterior temporals, are characteristic for Eirenis africanus, E. coronella, E. rothi, and Pseudocyclophis persicus. The latter species, morphologically the most strongly advanced dwarf snake, and the minute $E$.
lineomaculatus are distinguished by the absence of a loreal and single postoculars (synapomorphies). Remarkably, P. persicus and C. (s.l.) andreanus are similar in, for instance, their slender habitus and comparatively high ventral and subcaudal counts.

The dilemma posed by conflicting morphological and molecular data in Coluber (s.l.) andreanus calls for field work and further investigation in the laboratory. Certainly, paraphyly of the eastern Mediterranean Hierophis spp. and, hence, parallelism in Andreas' racer and Eirenis spp. as evidenced by mtDNA sequences cannot be excluded. From the molecular point of view, the systematic position of C. (s.l.) andreanus requires confirmation because a non coding sequence ( 12 S rDNA) from a single specimen was analysed, i.e., a nuclear origin cannot be ruled out.

The examination of hemipenis and osteological characters, and more genetic information for Coluber (s.l.) andreanus and dwarf snake species such as Eirenis africanus, E. coronella, E. lineomaculatus, and Pseudocyclophis persicus are crucial for the understanding of the perplexing results presented in this study and the evolution of morphological characters including body size in Palaearctic whip and dwarf snakes.

Taxonomic decisions with regard to Andreas' racer and the paraphyletic whip snake genus Hierophis (sensu Utiger and Schätti) are postponed pending further studies.

## ACKNOWLEDGEMENTS

We owe our thanks to Urs Utiger (Zürich) who realised the laboratory part of this paper and the phylogenetic analyses of the molecular data. Theodore J. Papenfuss (Berkeley, MVZ) and Robert Macey (Coalnut Creek) provided a tissue sample of Hierophis spinalis (MVZ 211019). The field trip to Iran in spring 2003 was partially sponsored by a grant of the G. \& A. Claraz Schenkung. Mohammad Ayatollahi, Department of Wildlife, and André Klaus, Swiss Embassy (both Tehran) provided support, logistics and invaluable help. We highly appreciated the company of our driver, translator, and friend Nader Rezayeh (Tehran). Josef F. Schmidtler (Munich) verified the determination of Eirenis medus from the Zagros and provided information about Iranian dwarf snakes. Corinne Charvet (Geneva) scanned and edited the illustration of Andreas' racer. Paul and Laura Joseph (London) gave linguistic advice on a Pacific beach. Patrick Deese and George C. Fields, Jr. (San Miguel de Allende) read bits and pieces of the manuscript.

## REFERENCES

Anderson, J. 1872. On some Persian, Himalayan, and other reptiles. Proceedings of the Zoological Society of London 1872 (2): 371-404.
Blyth, E. 1860. Report of Curator, Zoological Department. Journal of the Asiatic Society of Bengal 29 (1): 87-115.
Boettger, O. 1888. Über die Reptilien und Batrachier Transcaspiens (Vorläufige Mittheilung). Zoologischer Anzeiger 11 (279): 259-263.
Boettger, O. 1892. Wissenschaftliche Ergebnisse der Reise Dr. Jean Valentins im Sommer 1890. I. Kriechtiere der Kaukasusländer, gesammelt durch die Radde-Valentin'sche Expedition nach dem Karabagh und durch die Herren Dr. J. Valentin und P. Reibisch. Bericht der senckenbergischen naturforschenden Gesellschaft 1892: 131-150.

Böhme, W. 1993. Eirenis Jan, 1863 - Zwergnattern (pp. 265-277). In: Handbuch der Reptilien und Amphibien Europas. Band 3, Part I. Wiesbaden, Aula-Verlag, 479 pp.
Boie, F. 1826. Generalübersicht der Familien und Gattungen der Ophidier. Isis [Oken] 19 (10): 981-982.
Bonaparte, C. L. 1834. Coluber leopardinus [4 unnumbered pages]. In: Iconografia della Fauna Italica per le quattro Classi degli Animali vertebrati [1832-1841]. II. Amfibi [Fascicolo VII, punt. 38]. Roma, Salviucci.
Bollenger, G. A. 1894. Catalogue of the snakes in the British Museum (Natural History). Vol. 2. London, Trustees of the British Museum (Natural History), XI +382 pp .

Boulenger, G. A. 1914. Descriptions of new species of snakes in the collection of the British Museum. The Annals and Magazine of Natural History [8] 14: 482-485.
Doczenko, I.B. 1985. Revizija roda Eirenis (Reptilia, Colubridae). Soobszczenie 1. Vosstanovlenie roda Pseudocyclophis Boettger, 1888 [Revision of the genus Eirenis (Reptilia, Colubridae). Communication 1. Resurrection of the genus Pseudocyclophis Boettger, 1888]. Vestnik Zoologii 1985 (4): 41-44.
Doczenko, I.B. 1989. A review of the genus Eirenis (Reptilia, Colubridae) [Communication 2. Structure of the genus Eirenis]. Vestnik Zoologii 1989 (5): 23-29 [in Russian, with English summary].
Duméril, A. M. C., Bibron, G. \& Duméril, A. 1854. Erpétologie générale ou histoire naturelle complète des reptiles. Vol. 7 (1). Paris, Roret, XVI +780 pp.
Eiselt, J. 1976. Ergebnisse zoologischer Sammelreisen in der Türkei. Bemerkenswerte Funde von Reptilien, II. Annalen des Naturhistorischen Museums in Wien 80: 803-814.
Farris, J. S. 1989. The retention index and the rescaled consistency index. Cladistics 5: 417-419.
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
Franzen, M. \& Sigg, H. 1989. Bemerkungen zu einigen Schlangen Ostanatoliens. Salamandra 25 (3/4): 203-212.
Gmelin, J. F. 1789. Caroli a Linné, Systema naturae [...], Amphibia and Pisces (pp. 1033-1516). In: Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Vol. I [Pars 3] (editio decima tertia, aucta, reformata). Lipsiae [Leipzig], G. E. Beer.
Helfenberger, N. 2001. Phylogenetic relationships of Old World ratsnakes based on visceral organ topography, osteology, and allozyme variation. Moscow, Folium Publ. Comp., 62 pp .
Hennig, W. 1979. Phylogenetic systematics. University of Illinois Press, XIII [+3] + 263 pp.
Ineich, I. 2003. Reptiles et amphibiens de la République de Djibouti.
[http: //bch-cbd.naturalsciences.be/djibouti].
Jan, G. 1863. Enumerazione sistematica degli ofidi appartenenti al gruppo Coronellidae. Archivio per la Zoologia, l'Anatomia e la Fisiologia 2 (2): 213-330.
Jan, G. 1865. Prime linee d'una fauna della Persia occidentale (pp. 341-363). In: De Filippi, F., Note di un viaggio in Persia nel 1862. Milano, G. Daelli \& C. Editori, VIII [+2] +396 [+2] pp.
Lacépède, B. G. E., Comte de. 1789. Histoire Naturelle des Quadrupèdes ovipares et des Serpens. Vol. II. Paris, Hôtel de Thou, $9+20+144+474$ pp.
Laurenti, J. 1768. Austriaci Viennensis specimen medicum, exhibens synopsin reptilium. Wien, Caesareum Typographeum, 214 pp .
Leviton, A. E., Anderson. S. C., Adler, K. \& Minton, S. A. 1992. Handbook to Middle East amphibians and reptiles. Oxford [Ohio], Society for the Study of Amphibians and Reptiles. 252 pp.
Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Vol. I (editio decima, reformata). Holmiae [Stockholm], L. Salvii, IV + 823 [+1] pp.

Martin, W. C. L. 1838. [A collection of snakes procured by the Euphrates expedition.] Proceedings of the Zoological Society of London 6 [67]: 81-84.
Nagy, Z. T., Joger, U. \& Wink, M. 2000. Molekulargenetische Untersuchungen zur Phylogenie der Zornnattern (Gattung Coluber) [abstract]. Magdeburg, Jahrestagung der Deutschen Gesellschaft fïr Herpetologie und Terrarienkunde e.V. [September 2000]: 11.
Nikolskij, A. M. 1909. Novye dlja Kavkaza vidy presmykajuszczikhsja [Novae species reptilium e Caucaso]. Izvestja Kavkazskago Muzeja [Mitteilungen des Kaukasischen Museums] 4: 301-306.
Peters, W. 1862. [Eine Mittheilung] von über die von dem so früh in Afrika verstorbenen Freiherrn von Barnim und Dr. Hartmann auf ihrer Reise durch Aegypten, Nubien und dem Sennâr gesammelten Amphibien. Monatsberichte der Königlichen Preussischen Akademie der Wissenschaften zu Berlin 1862: 271-279.
Peters, W. 1866. [Eine Mittheilung] über neue Amphibien (Amphibolurus, Lygosoma, Cyclodus, Masticophis, Crotaphopeltis) und Fische (Diagramma, Hapalogenys) des Kgl. zoologischen Museums. Monatsberichte der Königlichen Preussischen Akademie der Wissenschaften zu Berlin 1866 [Februar]: 86-96.
SснÄтtı, B. 1985. Eine neue Zornnatter aus Zypern, Coluber cypriensis n. sp. Revue suisse de Zoologie 92 (2): 471-477.
Schätti, B. 1986. Morphological evidence for a partition of the snake genus Coluber (pp. 235238). In: Roč̌к, Z. (ed.). Studies in Herpetology (Proceedings of the European Herpetological Meeting, 1985). Prague, Charles University, XXVIII + 754 pp.
Schätti, B. 1987. The phylogenetic significance of morphological characters in the Holarctic racers of the genus Coluber (Reptilia, Serpentes). Amphibia-Reptilia 8 (4): 401-415.
Schättı, B. 1988. Systematik und Evolution der Schlangengattung Hierophis Fitzinger, 1843. Zürich, Inaugural-Dissertation, 50 pp . [unpublished].
Sснäтti, B. 1993. Coluber Linnaeus, 1758 - Zornnattern (pp. 69-71). In: Böнме, W. (ed.). Handbuch der Reptilien und Amphibien Europas, Band 3, Part I. Wiesbaden, AulaVerlag, 479 pp .
Sснätтi, B. 2001. Morphologie und Verbreitung von Coluber (sensu lato) andreanus (Werner, 1917) (Reptilia: Serpentes: Colubridae). Revue suisse de Zoologie 108 (3): 487-493.

Schätti, B. \& Charvet, C. 2003. Systematics of Platyceps brevis (Boulenger 1895) and related East African racers (Serpentes Colubrinae). Tropical Zoology 16: 93-111.
Schätti, B. \& Utiger, U. 2001. Hemerophis, a new genus for Zamenis socotrae Günther, and a contribution to the phylogeny of Old World racers, whip snakes, and related genera (Reptilia: Squamata: Colubrinae). Revue suisse de Zoologie 108 (4): 919-948.
Schmidtler, J. F. 1993. Zur Systematik und Phylogenie des Eirenis-modestus-Komplexes in Süd-Anatolien. Spixiana 16 (1). 79-96.
Schmidtler, J. F. 1997. Die Zwergnattern (Eirenis modestus-Komplex) des Antitaurus in SüdAnatolien und ihre geographischen Beziehungen zur begleitenden Herpetofauna. Salamandra 33 (1): 33-60.
Schmidtler, J. F. \& Baran, I. 1993a. Eirenis collaris (Ménétries, 1832) - Halsband-Zwergnatter (pp. 267-278). In: BöHme, W. (ed.). Handbuch der Reptilien und Amphibien Europas. Band 3, Part I. Wiesbaden, Aula-Verlag, 479 pp.
Schmidtler, J. F. \& Baran, I. 1993b. Eirenis modestus (Martin, 1838) - KopfbindenZwergnatter (pp. 279-292). In: BöhME, W. (ed.). Handbuch der Reptilien und Amphibien Europas. Band 3, Part I. Wiesbaden, Aula-Verlag, 479 pp.
Schmidtler, J. F. \& Eiselt, J. 1991. Zur Systematik und Verbreitung ostanatolischer Zwergnattern; mit Beschreibung von Eirenis hakkariensis n. sp. Salamandra 27 (4): 225-237.
Schmidtler, J. J. \& Schmidtler, J. F. 1978. Eine neue Zwergnatter aus der Türkei; mit einer Übersicht über die Gattung Eirenis (Colubridae, Reptilia). Annalen des Naturhistorischen Museums in Wien 81: 383-400.
Scortecci, G. 1930. Rettili ed anfibi raccolti dal Prof. E. Zavattari in Eritrea. Atti della Società italiana di Scienze naturali e del Museo civico di Storia naturale in Milano 69 (7): 193-217.

Shwayat, S. N. 1998. Systematics and distribution of snakes (genus Eirenis) in Jordan. University of Jordan, Amman, M. Sc. thesis, 139 pp. [unpublished, cited after Sivan \& Werner, 2003].
Sivan, N. S. \& Werner, Y. L. 2003. Revision of the Middle-Eastern dwarf-snakes commonly assigned to Eirenis coronella (Colubridae). Zoology in the Middle East 28: 39-59.
Stickel, W. H. 1951. Distinctions between the snake genera Contia and Eirenis. Herpetologica 7: 125-131.
Swofford, D. L. 1998. PAUP*: phylogenetic analysis using parsimony (and other methods). Version 4.0b10 for Mac.Sunderland, Sinauer.
Terentiev, P. V. \& Chernov, S. A. 1940. Kratkij opredelitel zemnovodnykh i presmykajuszczikhsja SSSR [Short determination key of the amphibians and reptiles of the USSR] (2nd ed.). Leningrad, Gosudarstvennoje Uchebno-Pedagogicheskoje Izdatelstvo, 183 pp .
Utiger, U. 2002. Molecular phylogeny of the Oriental colubrid genus Coelognathus Fitzinger, 1843, and a contribution to the systematics of Holarctic racers and ratsnakes (Reptilia: Squamata: Serpentes) [pp. 45-73]. University of Zürich, [unpublished] Sc. nat. thesis [part.], 73 [+1] pp.
Utiger, U., Helfenberger, N., Schätti, B., Schmidt, C., Ruf, M. \& Ziswiler, V. 2002. Molecular systematics and phylogeny of Old and New World ratsnakes, Elaphe auct., and related genera (Reptilia, Squamata, Colubridae). Russian Journal of Herpetology 9 (2): 105-124.

Utiger, U. \& Schätti, B. 2004. Morphology and phylogenetic relationships of the Cyprus racer, Hierophis cypriensis, and the systematic status of Coluber gemonensis gyarosensis Mertens (Reptilia: Squamata: Colubrinae). Revue suisse de Zoologie 111(1): 225-238.
Wall, F. 1908. Notes on a collection of snakes from Persia. Journal of the Bombay Natural History Society 18 (4): 795-805.
Werner, F. 1917. Reptilien aus Persien (Provinz Fars). Verhandlungen der kaiserlich-königlichen zoologisch-botanischen Gesellschaft in Wien 67 (5/6): 191-220.


[^0]:    ${ }^{1}$ Erroneously stated to be fused with the parietal (Schätti, 2001).

[^1]:    ${ }^{2}$ The antero-lateral extension of the parietal, and its contact with the lower postocular, is correlated with the condition of the first temporal scale (single).

[^2]:    ${ }^{3}$ This character state could not be ascertained for Eirenis thospitis and E. coronelloides. In the latter species, it is supposed that there is no difference vis-à-vis E. coronella, i.e., that coronelloides has a reduction to 13 dsr prior to the vent.

[^3]:    ${ }^{4}$ Most probably, the alleged absence of a preocular in certain specimens of Eirenis barani and E. levantinus (Schmidtler, 1993: Tb. 1) is in error.

